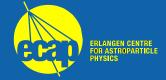

How to write a (potentially successful) observing proposal

Jörn Wilms

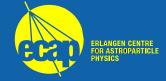
Dr. Karl-Remeis-Observatory and ECAP

- Why do we write proposals?
- The proposal process
- Tips and Tricks

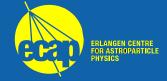

Why do we write proposals?

There are at least two reasons to write proposals:

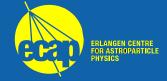
• You have a good scientific question that you want to get answered.



There are at least two reasons to write proposals:


- You have a good scientific question that you want to get answered.
- You need money
 - USA: NASA is the biggest funder of astronomy through research grants related to successful observations
 - Some European countries (e.g., Germany) allow to propose for money only if there is a successful proposal

You have a good idea for an observation. Why not just observe it? *Answer:* Many others also have good scientific questions ⇒ Strong competition for limited resources Result: significant oversubscription of available facilities oversubscription = time requested/available



You have a good idea for an observation. Why not just observe it? *Answer:* Many others also have good scientific questions ⇒ Strong competition for limited resources Result: significant oversubscription of available facilities oversubscription = time requested/available

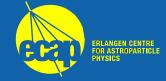
Typical numbers:

- small optical telescopes: 0.5...2
- VLA: 2...3
- 8 m type optical telescopes (e.g., VLT), HST: 5...6
- XMM-Newton, Chandra: 5...6

Example: Chandra AO7: 725 submitted proposals, 125 accepted proposals.

You have a good idea for an observation. Why not just observe it? *Answer:* Many others also have good scientific questions ⇒ Strong competition for limited resources Result: significant oversubscription of available facilities oversubscription = time requested/available

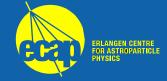
Typical numbers:


- small optical telescopes: 0.5...2
- VLA: 2...3
- 8 m type optical telescopes (e.g., VLT), HST: 5...6
- XMM-Newton, Chandra: 5...6

Example: Chandra AO7: 725 submitted proposals, 125 accepted proposals.

Most proposals will be rejected.

This means that only the best science (for some definition of "best") gets done. Others call this a lottery.


Astronomical instrumentation is expensive.

Agencies want and need proposals to ensure that the best science is done with a telescope or satellite.

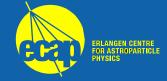
 \implies Oversubscription is good!

Examples:

Astronomical instrumentation is expensive.

Agencies want and need proposals to ensure that the best science is done with a telescope or satellite.

 \implies Oversubscription is good!


Examples:

Radio:

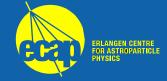
- Effelsberg: 480 €/hour ⇒ 133 €/ksec
- VLBA: 740 €/hour ⇒ 205 €/ksec

assuming building cost of \$85 Million

Astronomical instrumentation is expensive.

Agencies want and need proposals to ensure that the best science is done with a telescope or satellite.

 \implies Oversubscription is good!


Examples:

Optical Observatories:

- DSAZ (Calar Alto Observatory): 2.2 m: 3000 €/Night ⇒ 100 €/ksec
- ESO 2.2 m (La Silla): 7000 €/Night ⇒ 233 €/ksec
- ESO NTT (La Silla): 10000 €/Night ⇒ 330 €/ksec
- ESO VLT (Paranal): 59400 €/Night ⇒ 2000 €/ksec
- HST: >11000 €/ksec

Assuming 1 Night = 30 ksec; HST: cost was \$9.6 billion between 1990 and 2009.

Astronomical instrumentation is expensive.

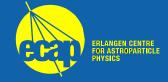
Agencies want and need proposals to ensure that the best science is done with a telescope or satellite.

 \implies Oversubscription is good!

Examples:

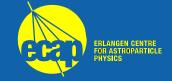
X-rays:

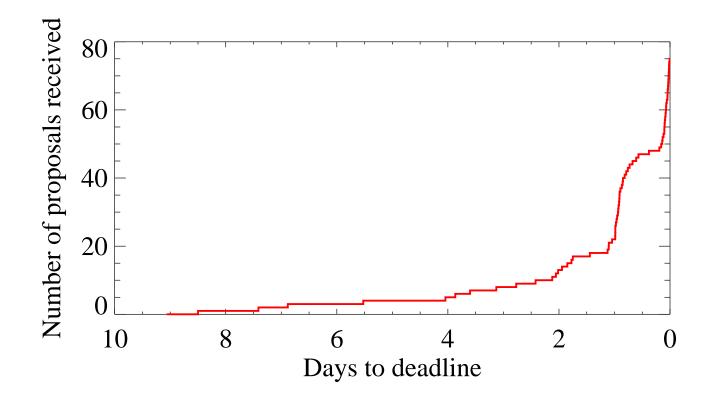
- *RXTE*: 360 €/ksec
- Swift: 630 €/ksec
- XMM-Newton: 1800 €/ksec


ESA cost only, does not include spending by member states on hardware teams or support in member states for observers.

• Chandra: 7700 €/ksec

Basis: Annual operating cost \$65 million (includes guest observer program), and cost to launch: \$2.5 billion depreciated over 15 yr lifetime.

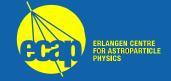

The Proposal Process


T = -few months

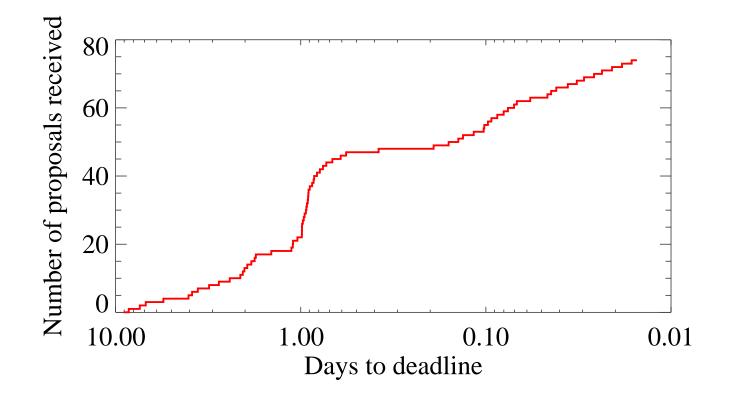
T = -few months: Agency or observatory sends out a call for proposals Often called "Announcement of Opportunity" (AO)

- X-rays: typically once per year for \sim the following year
 - Chandra, INTEGRAL: Spring
 - XMM-Newton: Fall
 - Suzaku: ~December
- optical: typically $2 \times$ per year
 - e.g., ESO: 1. April for the period 1. October 31. March
- radio: often trimesters
- ⇒ multiwavelength campaigns require *significant* planning
- \implies you can spend / waste all of your time writing proposals

T = 0: Proposal Submission



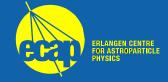
Arrival of proposals for *INTEGRAL* AO7 KP deadline (T = 0 was on 3 July, 12 UT)


T = 0: Submission of proposals

Usually done via WWW interface or specialized software

⇒ Ensure that software works well before deadline!

T = 0: Proposal Submission



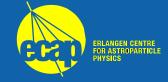
Arrival of proposals for *INTEGRAL* AO7 KP deadline (T = 0 was on 3 July, 12 UT)

T = 0: Submission of proposals

Usually done via WWW interface or specialized software

⇒ Ensure that software works well before deadline!

T = 1 month


- T = 1 month: Preparation for review
- 1. Formal checks of proposals (100–800 depending on facility) are done at the agency:
 - Does proposal obey the rules and regulations?
 - page or word limit correct?
 - are you allowed to propose for your object?
 - e.g., INTEGRAL doesn't allow you to propose for the next nearby SN
 - is your proposal technically feasible?

Information will be forwarded to the reviewers

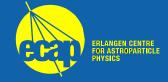
- is a similar observation already available in the archives? Information will be forwarded to the reviewers
- 2. Proposal assigned to one of a few subject areas

e.g., stars, X-ray binaries, galaxies and AGN, deep fields

3. Proposal is sent to the subject area specific review panel

T = 2 months

T = 2 months: Proposals are read by the subject area specific panel


Good numbers to keep in mind:

- 50–80 proposals per panel
- 5–8 reviewers per panel

Reviewers are specialists in the general subject area, but *not* in the subject of your proposal!

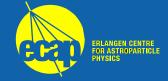
In preparation for review:

- All reviewers are supposed to read all proposals
- Many facilities adhere to the following procedure:
 - Each reviewer is primary reviewer on \sim 10–15 proposals
 - Each reviewer is secondary reviewer on another \sim 10–15 proposals
- Reviewers do initial grading of proposals

T = 3 months

T = 3 months: Panel Meeting

X-ray: Depending on satellite done centrally (NASA, *INTEGRAL*) or distributed throughout Europe (*XMM-Newton*).


Optical: most often done centrally (e.g., ESO)

Radio: Often done by telecon or even anonymously

1st day: First panel meeting

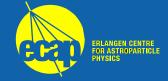
- Proposals discussed in panel according to subject area and/or initial ranking
- lowest 25–30% ranked proposals get triaged
- Primary/Secondary reviewer present each proposal
- Proposal is discussed: ~10 minutes per proposal!
- Panel votes to give new grade

At the end of the 1st day, a new priority ordered list of proposals exists, which is already very close to the final list.

T = 3 months

2nd day: List of proposals gets looked at again:

- Can constraints of individual proposals be accommodated?
 - Target of Opportunity observations?
 - Duration of observations vs. visiblity of target
 - Time constrained observations

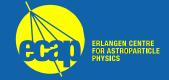

(e.g., simultaneous X-ray/optical, multi-satellite,...)

If not, even very good proposals have to be killed.

- Is the panel's program balanced? e.g., in an X-ray binary panel: BH versus NS binaries versus CVs; this may result in a good but long proposal getting kicked out in order to accommodate a few shorter proposals
- Write up (more or less useful) feedback
- Reviewers fly home (i.e., session ends around 15:00)

Good proposals are discussed for a maximum of 15 Minutes.

About 80% of all proposals are "good".



T = 3 months

3rd day or separate meeting: chairs meeting

- Haggling on "boundary cases"
- Discussion of Key Programs or Large Programs

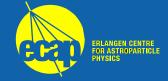
These are very long programs, e.g., deep fields, surveys, which can cost more time than a single panel has available.

After the Panel Meeting

Weeks after the panel meeting:

- Agency sends out rejection and acceptance letters
- "observation enhancement"

 \sim 6–18 Months after proposal deadline: Observations are performed...


- Grade A: definitively
- Grade B: probably
- Grade C: possibly ("filler target")

fillers are needed to optimize observing efficiency

Different grading schemes are possible; I don't know how the radio people are doing their scheduling.

1 year after data are received by PI: Data become public.

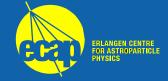
Tips and Tricks

Define Observation

Before writing a proposal, you should do your homework:

- read and understand instructions for proposers page limit, submission software,... formalities matter!
- test your idea: convince others that your suggested observation is interesting and important.

This also helps you in formulating the proposal and your scientific questions.


• check archives for same/similar observations

If these exist, you will have to address this in the proposal!

understand your instrument

Do a rough feasibility study, check visibility of source, estimate S/N, are there other facilities you could use?...

Read the relevant documentation on the instrument you plan to use.

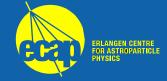
Structure

General structure of a proposal:

- 1. (Abstract)
 - \implies The only thing all reviewers will read
- 2. Introduction (1 p)

 \implies Why is this science interesting? What are the open questions? Big picture?

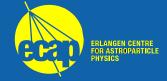
3. Scientific Justification (2 p)


 \implies Why is your observation interesting? How will you do the analysis?

- 4. Technical Feasibility (0.5 p)
 - \implies Prove that the observation is doable

E.g., perform S/N estimates, simulate the spectrum or image, estimate required exposure (short is good), show that source is visible, discuss why other facilities couldn't do the science better (e.g., *Chandra* vs. *XMM-Newton*, VLA vs. VLBI...)

Rule of thumb: If the 1st page is not interesting and does not state what you want, your proposal will not get accepted.


How to write a good proposal

Writing Style

- Proposals will be read by non-specialists
 - \implies Give your proposal to an astronomer friend
- Proposals will be read in a hurry
 - \implies Use the KISS-principle
 - KISS=Keep it simple, stupid!
- Get to the point immediately
- Be explicit in what you want to do
 - \implies e.g., sparingly use **boldface** to emphasize an important point
- Avoid jargon, acronyms, or complicated language
 - \implies and use good english (have native speaker read proposal)

If the referees don't understand what you want, you have lost: Because of oversubscription, panels are looking for arguments to kick you out, not to keep you in!



Technical Issues

Technical issues to address:

- Be consistent
 - \implies e.g., use same exposure throughout
- Follow agency/observatory recommendation for estimating count rates / exposure times
 - \implies or scale from archival observations where available
- Do not forget to check archives and visibility!

For further information on proposals formalities, exposure time estimators, etc., please see the different facility WWW-pages.

Further Reading

• Fomalont, E.: Preparing a competitive radio proposal (Santa Fe, 2004)

http://www.aoc.nrao.edu/events/xraydio

• Leibundgut, B.: ESO proposals (Prague, 2009)

http://www.eso.org/~bleibund/talks/Proposals_Prague09_pub.pdf

• Seward, F.D.: How to write an X-ray proposal (Santa Fe, 2004)

http://www.aoc.nrao.edu/events/xraydio

Further Reading

Good Luck!